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ABSTRACT

We compute the angular power spectrum C` from 1.5 million galaxies in early SDSS data on large
angular scales, ` �< 600. The data set covers about 160 square degrees, with a characteristic depth of
order 1h�1 Gpc in the faintest (21 < r0 < 22) of our four magnitude bins. Cosmological interpretations
of these results are presented in a companion paper by Dodelson et al. (2001). The data in all four
magnitude bins are consistent with a simple at \concordance" model with nonlinear evolution and
linear bias factors of order unity. Nonlinear evolution is particularly evident for the brightest galaxies.
A series of tests suggest that systematic errors related to seeing, reddening, etc., are negligible, which
bodes well for the sixtyfold larger sample that the SDSS is currently collecting. Uncorrelated error bars
and well-behaved window functions make our measurements a convenient starting point for cosmological
model �tting.

Subject headings: large-scale structure of universe | galaxies: statistics | methods: data analysis

1. INTRODUCTION

Galaxy clustering encodes a wealth of cosmological in-
formation. By breaking degeneracies between cosmologi-
cal parameters and by permitting powerful cross checks,
it complements other cosmological probes such as the cos-
mic microwave background (CMB) both in theory (e.g.,
Eisenstein et al. 1999) and in practice (e.g., Netter�eld et
al. 2001; Pryke et al. 2001; Stompor et al. 2001; Wang et
al. 2001).
Although purely angular galaxy catalogs lack the three-

dimensional information present in redshift surveys, they
tend to be quite competitive because of their much greater
numbers of galaxies. A case in point is the APM sur-
vey, which still provides one of the most accurate three-
dimensional power spectrum measurements despite lacking
redshift information (Efstathiou & Moody 2000). In this
spirit, the goal of the present paper is to measure the 2D

power spectrum C` from early imaging data in the Sloan
Digital Sky Survey (SDSS; York et al. 2000). The an-
gular correlation function w(�) of this SDSS data is pre-
sented in a companion paper by Connolly et al. (2001,
hereafter S2001), and both of these angular clustering
measures are inverted to 3D power spectra P (k) in Do-
delson et al. (2001). The galaxies are analyzed directly
in terms of power spectrum parameters in Szalay et al.
(2001). The data set upon which all these analyses are
based is presented and extensively tested for systematic
errors in Scranton et al. (2001, hereafter S2001). 3D clus-
tering using galaxies with measured redshifts is studied in
Zehavi et al. (2001).
The angular correlation function w(�) has many merits

as a measure of clustering. It is fast to compute even for
massive data sets, and its broad familiarity in the astro-
nomical community facilitates comparison with theoretical
predictions as well as other observations. Notwithstand-
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ing, as detailed in Appendix A, the angular power spec-
trum C` has three virtues that makes it quite complemen-
tary to w(�) and worth computing as well21:

1. It is possible to produce measurements of C` that
are both uncorrelated and have well-behaved window
functions.

2. The C`-estimators represent a lossless compression
of the full data set in the sense that they retain all
of its angular clustering information on large scales,
where the Gaussian approximation applies.

3. The C`-coeÆcients are more closely related to the 3D
power spectrum P (k) than w(�) is, in the sense of
giving narrower window functions in k-space (Baugh
& Efstathiou 1994). This is an advantage for 2D 7!
3D inversions, since it reduces troublesome aliasing
from small scales where nonlinear e�ects are diÆcult
to model.

These attractive properties have triggered a resurgence of
interest in measuring C` from galaxy surveys (Scharf & La-
hav 1993; Baugh & Efstathiou 1994; Huterer et al. 2000),
extending the pioneering work of Hauser & Peebles (1973).
On small scales where nonlinear e�ects become impor-

tant, the angular power spectrum loses much of its appeal.
Non-Gaussian clustering introduces correlations between
di�erent `-bands, our method becomes computationally
cumbersome, and much of the interesting physics takes
place in real space rather than in Fourier space, with the
observed clustering telling us more about halo properties
than about the initial linear power spectrum. In summary,
as described in Appendix A, the C`-analysis presented here
and the w(�) analysis in Connolly et al. (2001) are highly
complementary, with advantages on large and small scales,
respectively. We therefore limit our analysis to large angu-
lar scales ` �< 600, corresponding to the linear and weakly
nonlinear regime. A multipole ` corresponds roughly to an
angular scale � � 180Æ=`, so our limit ` �< 600 corresponds
to a spatial scale of order 5h�1 Mpc at the characteristic
survey depth of 1h�1 Gpc.
The rest of this paper is organized as follows. In Sec-

tion 2, we measure the angular power spectrum C` and
discuss how it is related to the underlying 3D power spec-
trum P (k). In Section 3, we perform a range of tests and
Monte-Carlo studies to assess the reliability of our results
given potential problems with extinction, seeing, software
and non-linear clustering, and summarize our conclusions.
Two appendices discuss how our angular power spectrum
measurements relate to the angular correlation function
w(�) and the underlying 3D power spectrum P (k).

21 It is worth emphasizing that although the theoretical C` and
w(�) are simply Fourier (more precisely Legendre) transforms of one
another, there is no such equivalence between the measured C` and
w(�) because of incomplete sky coverage and other complications.
Because di�erent pair weightings are applied to the multitude of
galaxies before they are compressed into the handful of C` and w(�)
numbers presented here and in Connolly et al. (2001), the infor-
mation content in the two is fundamentally di�erent. Although it is
possible to construct a losslessw(�)-estimator that contains the same
information as C`, this is not desirable for the reasons described in
Appendix A | it limits the dynamic range and it destroys a key
property of conventionalw(�)-estimators: perfect window functions,
i.e., the estimated correlation at separation � probes only correla-
tions on that scale.

2. THE ANGULAR POWER SPECTRUM

2.1. Data

This paper builds on the foundation laid by S2001,
which produces a galaxy sample demonstrated to be of
suÆcient quality to permit a large-scale angular cluster-
ing analysis not dominated by systematic errors. We use
the \EDR-P" sample described in S2001 for our anal-
ysis, which stands for early data release (Stoughton et
al. 2001) with galaxy probabilities used in place of rigid
counts22. It consists of galaxies in the equatorial stripe
145Æ < �2000 < 235Æ, �1:25Æ < Æ2000 < 1:25Æ with re-
gions of high extinction and poor seeing discarded. As in
S2001, we analyze four subsamples of the galaxies sepa-
rately, corresponding to ranges of model r0-magnitude of
18-19, 19-20, 20-21 and 21-22, respectively. The r0 mag-
nitude is de�ned in Fukugita et al. (1996). These four
samples consist of e�ectively N =57,781, 158,636, 428,920
and 886,936 galaxies, respectively.
A set of powerful tools for angular power spectrum es-

timation has been developed in the CMB community, and
to take advantage of this, we begin by re-expressing our
galaxy analysis problem in a form analogous to the CMB
case. We do this by dividing our sky patch into N square
\pixels" of side 12.5 arcminutes, corresponding to one pixel
height per camera column (Gunn et al. 1998), and com-
puting the density uctuation

xi � ni
�ni
� 1 (1)

in each one. Here ni is the observed number of galaxies
in each pixel and �ni is the expected number, taking into
account the slight spatial variations in completeness as in
S2001. There are 3695 pixels in each of the three brightest
magnitude bins and 3274 in the 21 < r0 < 22 bin where
the seeing cuts were more stringent.

2.2. The basic problem

Given a pixelized map xi and associated shot noise error

bars �n
�1=2
i , we compute the angular power spectrum with

the quadratic estimator method (Tegmark 1997; Bond et
al. 2000), using KL-compression to accelerate the process
(Bond 1994; Bunn 1995; Vogeley & Szalay 1996). Since
this procedure has been described in detail in the recent
literature (see Tegmark & de Oliveira-Costa 2001 for a
recent review using our present notation and Huterer et
al. (2001) for a recent application to galaxy clustering),
we summarize the method only very briey here.
We group our map pixels xi into an N -dimensional vec-

tor x. The vector x has a vanishing expectation value
(hxi = 0), and we can write its covariance matrix as

C � hxxti = S+N; S �
X
i

piPi; (2)

for a set of power parameters pi and known matrices Pi

that are given by the map geometry in terms of Legen-
dre polynomials. N denotes the contribution from shot

22As detailed in S2001, each object is assigned a probability be-
tween zero and one that it is a galaxy based on its observed proper-
ties. Throughout this paper, we use the sum of these probabilities
as our estimate of the number of galaxies in a given region.
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noise, and is a known diagonal matrix. We parametrize
the power spectrum

�2` �
`(` + 1)

2�
C` (3)

(customarily denoted ÆT 2
` in the CMB literature) as piece-

wise constant in 50 bands of width �` = 20, with height
pi in the ith band. �`, which is a dimensionless number,
can roughly be interpreted as the rms uctuation level on
the angular scale � � 180Æ=`. In summary, knowing the
power spectrum parameters pi would allow us to predict
the theoretical covariance matrix of our data via equa-
tion (2). Our problem is to do the opposite, and estimate
the parameters pi using the observed data vector x.

2.3. KL-compression

Since the power spectrum estimation in the next subsec-
tion involves repeatedly multiplying and inverting N �N
matrices, and each such manipulation requires of order N3

operations, we apply a data-compression step that reduces
the size of our data set. We employ the Karhunen-Lo�eve
(KL) compression method (Karhunen 1947; Bond 1995;
Bunn & Sugiyama 1995; Vogeley & Szalay 1996; Tegmark
et al. 1997; Szalay et al. 2001), which compresses the in-
formation content of a map into the �rst part of a vector
y � Btx, where B is an N �N matrix whose ith column
bi satis�es the generalized eigenvalue equation

Sbi = �iNbi; (4)

normalized so that btiNbi = 1 and sorted by decreasing
�i. The N numbers yi are uncorrelated, i.e.,

hyiyji = bti(N + S)bj = (1 + �i)Æij ; (5)

and their variance hy2i i has a contribution of 1 from noise
and �i from signal. This means that the eigenvalue �i
can be interpreted as a signal-to-noise ratio for yi. The
�rst 500 of these numbers yi (KL-coeÆcients) are shown
in Figure 1 for the 21 < r0 < 22 band, and it is seen that
most of the cosmological signal is contained in the �rst
few hundred modes. We discard all modes with signal-
to-noise ratio �i below unity, which leaves us with 1255,
1656, 2510 and 2693 modes for the four magnitude bands,
respectively. This KL-expansion is useful not only to save
time, but also for systematic error checks. Figure 1 shows
that none of the modes deviates from zero by a surprisingly
large amount (for instance, out of the �rst 100 modes, typ-
ically only 5 should deviate by 2� and none by 3�). A sim-
ilar KL-compression is performed in Szalay et al. (2001),
where parameters of the 3D power spectrum are measured
directly from the KL modes. 2D images of KL-modes for a
rectangular strip are plotted in Tegmark (1997) and Szalay
et al. (2001), illustrating that they tend to probe progres-
sively smaller angular scales.

2.4. Integral constraint

An important complication when computing clustering
on large scales is the so-called integral constraint. Since
the mean galaxy density �n is a priori unknown, it must
be estimated from the data itself, implicitly forcing the
vector x to have zero mean. We tackle this problem by

Fig. 1.| The triangles show the KL-coeÆcients yi for the
21 < r0 < 22 magnitude bin (2693 in top panel, �rst 100 in bot-
tom panel). If there were no clustering in the survey, merely shot
noise, they would have unit variance, and about 68% of them would
be expected to lie between the two horizontal lines (in the band
�1 < yi < 1). Cosmological uctuations in the data would increase
the standard deviation, as indicated by the other thin curves. From
inside out, the thin curves correspond to the theoretically predicted
rms uctuation level

p
1 + �i with our prior power spectrum renor-

malized by factors 0, (1=3)2, (2=3)2, 1 and (4=3)2, respectively. The
green/grey curve is the rms of the data points yi, averaged in bands
of width 25, and shows the cosmological uctuation signal rising to
the left. As a rule of thumb, the ith KL-mode probes angular scales
` � (i=fsky)

1=2 � 16
p
i, as indicated by upper axis labels, where

fsky � 0:004 is the sky fraction covered in this survey (Tegmark
1997). Note that green/grey curves nearly match the power per
mode predicted by the prior model curve (normalization factor 1,
heavy curve), showing that this model is good for estimating errors.

only using modes that are orthogonal to the (completely
unknown) mean, i.e., to the vector e = (1; 1; :::; 1) corre-
sponding to a constant o�set in the map. This idea goes
back to Fisher et al. (1993) and becomes very simple to
implement for our pixelized case (Tegmark et al. 1998). In
principle, it suÆces to add a very large noise to the mean
mode, i.e., to add a huge numberM times eet to the noise
matrix N, and the subsequent KL-compression will auto-
matically relegate the mean mode to the list of useless ones
to be discarded. In practice, we remove the mean mode
analytically as described in Appendix B of Tegmark et
al. (1998), which corresponds to the limit where the huge
number M !1.

2.5. Basic results

Once our data and the corresponding matrices have been
KL-compressed (in which x gets replaced by y � B0x, Pi

gets replaced by B0tPiB
0, N gets replaced by B0tNB0 =

I, where the rectangular matrix B0 denotes the left part
of the square matrix B corresponding to the KL column
vectors we wish to keep), we proceed to compute quadratic
estimators bpi of our power spectrum parameters pi. The
results are shown in �gures 2 and 3 and are listed in Table
1.
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Since it is important for the interpretation, let us briey
review how these measurements are computed from the
input data, in this case the vector y of KL-modes. A
quadratic estimator bpi is simply a quadratic function of
the data vector, so the most general unbiased case can be
written as bpi � ytQiy � si; (6)

where the Qi are arbitrary symmetric N �N -dimensional
matrices and the si � tr [QiN] are the shot noise contribu-
tions. Grouping the parameters pi and the estimators bpi
into vectors denoted p and bp, the expected measurement
is

hbpi =Wp (7)

for a window matrixW that can be computed from theQi-
matrices and the sky geometry alone (Wij = tr [PiQj ]).
The Q-matrices are normalized so that each row of the
window matrix sums to unity. This enables us to interpret
each band power measurement bpi as a weighted average of
the true power spectrum pj, the elements of the ith row of
W giving the weights (the \window function").
The basic idea with quadratic estimators is that each

matrix Qi can be chosen to e�ectively Fourier transform
the sky map, square the Fourier modes in the ith power
spectrum band and average the results together, thereby
probing the power spectrum on that scale. We use the
particular choice of Q-matrices advocated by Tegmark &
Hamilton (1998) (see Tegmark & Oliveira-Costa 2001 for
a treatment conforming to our notation), described in Ap-
pendix A, which has the advantage of making the error
bars on the measurements uncorrelated. In other words,
the covariance matrix for the measured vector bp is diag-
onal (combining shot noise and sample variance errors),
so it is completely characterized by its diagonal elements,
given by the error bars in Table 1 and Figure 2. This co-
variance matrix M � hbpbpti � hbpihbpit is generally given
by Mij = 2tr [QiCQjC] for the Gaussian case, and our
particular choice of Q-matrices thus reduces it to a diag-
onal matrix Mij = Æij(�bpi)2. C of course depends on
p through equation (2), and when computing M to ob-
tain our error bars �bpi, we use the \prior" power spectra
described below, smooth curves �tting our measurements.
The window functions corresponding to our 50 band

power measurements (the rows of the matrixW) are plot-
ted in Figure 4 for the faintest magnitude bin. This con-
nects our measurements bpi to the binned underlying power
spectrum �2` . The windows are seen to have a character-
istic width of order �` � 50, which is determined by the
size of our sky patch in the narrowest direction (Tegmark
1997). We are thus unable to resolve the angular power
spectrum �ner than this because our survey strip is so nar-
row in the declination direction, limiting the `-resolution
to of order �` � 180Æ=2:5Æ. Figure 4 also shows a no-
table transition around ` = 600. This coincides with the
angular scale where the cosmological uctuations drop be-
low Poissonian shot noise uctuations, and has a simple
interpretation. On the larger scales where shot noise is
less important, the Q-matrices weight the galaxies in such
a way as to make the window functions narrow, thereby
minimizing the sample variance contribution to the er-
ror bars caused by power aliased from other scales. On
smaller scales, the Q-matrices weight all areas of the map
essentially equally, without bothering with niceties such

Fig. 2.| The angular power spectrum �` � [`(`+ 1)C`=2�]
1=2 is

shown for the four magnitude bins. The horizontal location of each
point and the associated horizontal bars correspond to the mean
and rms width of the corresponding window function. These mea-
surements are uncorrelated in the approximation of Gaussian uc-
tuations. The curves are the \prior" power spectra used, i.e., the
concordance model from Wang et al. (2001) with (solid) and with-
out (dashed) nonlinear evolution, using four separate bias factors of
order unity as described in the text.

as apodization (down-weighting parts near edges), in an
attempt to minimize the all-dominating shot noise. This
results in less well-behaved window functions, which are
both broader and are seen to have a \red leak" of power
from substantially larger scales. Since the measurements
beyond this transition regime are noise dominated and
contain very little information, producing mere upper lim-
its, we simply discard them. This cuto� corresponds to
` =500, 500, 600 and 700 in the four magnitude bins, re-
spectively | note that shot noise dominates the brighter
magnitude bins at lower `, since they contain fewer galax-
ies.
To improve the signal-to-noise ratio, we average these

measurements into bands as speci�ed in Table 1. Since
the original measurements are uncorrelated, so are these
averages. The corresponding 14�50 window function ma-
trices for each magnitude bin, which are necessary for com-
paring our measurements with theoretical predictions, will
be published electronically with this article and are also
available at http://www.hep.upenn.edu/�max/sdss.html.

2.6. Fits and priors

As mentioned above, we need to use a prior power spec-
trum consistent with the data to compute accurate error
bars. To avoid the prior acquiring spurious wiggles caused
by over-�tting noise uctuations, it is desirable to use a
smooth curve with as few tunable parameters as possible
that nonetheless is consistent with the �nal measurements.
As seen in Figure 2 and Figure 3, the simple \concor-
dance" model from Wang et al. (2001) provides a good �t
to the data in all four magnitude if we use bias factors
b = 1:0, 0:9, 0:85 and 0:8, respectively, so we use these
power spectra as priors. This is a at neutrino-free model
with purely scalar adiabatic uctuations, a cosmological
constant 
� = 0:66, baryon density h2
b = 0:02, Hubble

http://www.hep.upenn.edu/~max/sdss.html
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Fig. 3.| Same as previous �gure, but with logarithmic axes and
for C` rather than �`. Although logarithmic axes make window
functions more diÆcult to interpret, it facilitates connecting to the
underlying 3D power spectrum P (k), which is very crudely speaking
the same curve shifted vertically and horizontallywith di�erent axis
labels. The shifts depend on the magnitude bin: the fainter (and on
averagemore distant) the galaxies, the further up and to the left the
curve should be shifted | up because there is more averaging along
the line of sight which suppresses uctuations, to the left because a
given angular scale ` corresponds to larger spatial scales. The solid
lines of slope �3 indicate the direction of this shift when the mean
survey depth is changed. In the absence of relative bias, this shifting
should place the four curves on top of each other.

Fig. 4.| Sample window functions are shown for the band-power
measurements in the magnitude bin 21 < r0 < 22. These are the
rows of the window matrix W, and connect our band-power mea-
surements bpi to the underlying power spectrum �2` .

parameter h = 0:64 and spectral index ns = 0:93, nor-
malized so that linear �8 = 0:9 for the dark matter. This
model is well �t by a simple untilted BBKS power spec-
trum (Bardeen et al. 1986), parameterized by horizontal
and vertical scaling factors � and �8 as in Szalay et al.
(2001), using (�; �8) = (0:15; 0:9).
We have corrected for non-linear evolution using the

Hamilton et al. (1991) approximation as implemented in
Jain et al. (1996). Figure 2 shows nonlinear evolution to

be quite important, especially for the brighter galaxies,
with the corresponding linear model substantially under-
predicting the power on small scales. In Section 3.2 be-
low, we will see that the central limit theorem nonetheless
produces a fairly Gaussian 2-dimensional projected galaxy
distribution because of averaging along the line of sight.
We use this cosmological model merely for a convenient

parametrization of our prior | physical interpretation
must take into account selection function uncertainties,
etc., and the reader is referred to Dodelson et al. (2001)
and Szalay et al. for a detailed treatment of this. The
slight di�erences in normalization may reect clustering
evolution, di�erences in bias properties between the four
samples or some combination thereof.
On angular scales much smaller than a radian, the slope

n of a power-law angular power spectrum C` is related to
the power law slope m of the angular correlation function
w(�) = �m by m+n = �2, so the typical power law slopes
of order n � �1:5 in Figure 3 correspond to correlation
function slopes of order m � �0:5, in good agreement
with the w(�) measurement in Connolly (2001).

2.7. Relation to 3D power spectrum

Let us conclude this section by briey commenting on
how to interpret our measurements. In a companion paper
(Dodelson et al. 2001), the present results and those on
the angular correlation function from S2001 are used to
recover an estimated 3D power spectrum P (k). Here we
present the relevant window functions that are used as a
starting point for such analyses.
As described in Huterer et al. (2001) and Appendix B,

the angular power spectrum C` is related to the 3D power
spectrum P (k) via the simple relation

C` =
2

�

Z
1

0

f`(k)
2P (k)k2dk; (8)

where the dimensionless function

f`(k) �
Z
1

0

j`(kr)f(r)dr: (9)

Here f is the probability distribution for the comoving
distance r to a random galaxy in the survey, optionally
weighted by an evolution factor, and j` is a spherical Bessel
function. In other words, the integral kernel transform-
ing from 3D to our angular 2D case is simply a Bessel-
transform of the radial selection function. A sample of
these integral kernels are plotted in Figure 5. Accurate
approximations of this kernel are available in the small-
angle limit, but we use the full expression here since it
is so simple (computational details are given in Appendix
B), and since scales where sky-curvature is non-negligible
will eventually be well probed by the SDSS.
By taking linear combinations of the kernels from Fig-

ure 5 corresponding to our `-space window functions, we
obtain the kernels of Figure 6, showing which k-values each
of our band-power measurements is probing. This enables
us to interpret our band-powers as measuring weighted
averages of the 3D power spectrum P (k) as shown in Fig-
ure 7. This plot is by no means a substitute for a thorough
reconstruction of the 3D power spectrum as in Dodelson
et al. (2001), incorporation selection function uncertainties
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Fig. 5.| The solid curves show the exact k-space window function
corresponding to C` for multipoles ` = 1, 2, 4, 8, 16, 32, 64, 128,
256 and 512, respectively, renormalized to have unit area, using
the radial selection function for magnitude bin 21 < r0 < 22. The
dashed curves show the same window functions computed in the
small-angle approximation. These window functions connect the
angular power spectrum C` to the underlying 3D power spectrum
P (k) via equation (8).

etc, but provides a useful rough guide as to which spatial
scales are probed and, in particular, as to the `-values for
each magnitude bin beyond which nonlinear clustering is
likely to be important.
To gain further intuition about the relation between C`

and P (k), an additional approximation is instructive. As
shown in Appendix B, the 2D and 3D power spectra are
approximately related by

C` � �

r3
�

P (k); (10)

where k = �`=r� and r� is the mean depth of the survey.
The key approximationmade here is that C` in fact probes
not simply the power P at wavenumber k, but rather a
weighted average of P with a window function of width
�k � k. Here �, � and  are dimensionless constants of
order unity that depend only on the shape of the radial
selection function, not on its depth. For the SDSS case
described in Dodelson et al. (2001), � � 0:75, � � 1:1 and
the smoothing width  = �k=k � 0:37.
In other words, we can interpret C` as a smoothed ver-

sion of P (k) shifted vertically and horizontally in a log-log
plot such as Figure 3. Moreover, equation (10) shows that
mis-estimates of the radial selection function depth r� will
simply shift the entire P (k)-curve along the lines of slope
�3 shown in Figure 7, without changing its shape.

3. ROBUSTNESS AND LIMITATIONS OF RESULTS

How reliable are the angular power spectrum measure-
ments computed above? In this section, we discuss the un-
derlying assumptions and their limitations. We focus on

Fig. 6.| The curves show the k-values probed by our 14 band
power measurements for the faintest magnitude bin, thereby con-
necting what we measure to the 3D power spectrum P (k). In other
words, these window functions, de�ned by equation (B11), are anal-
ogous to those in Figure 4, but in k-space rather than `-space.

Fig. 7.| The same band power measurements as in Figure 2, but
plotted in k-space using the window functions from Figure 6. Specif-
ically, the data points are the rescaled band power coeÆcients which
probe a weighted average of P (k) as speci�ed by equation (B11). An
inversion from 2D to 3D power spectra is performed in Dodelson et
al. (2001) | the data plotted here are merely the input to those
calculations. For comparison, the solid curve is the �CDM \con-
cordance" model from Wang et al. (2001) with (solid) and without
(dashed) nonlinear evolution. If the mean depth has been under-
estimated for one of the Galaxy samples, the corresponding points
should shift up to the left along the dotted lines of slope �3.

three areas and discuss them in turn: potential problems
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with the input data, potential problems with the data pro-
cessing (analysis algorithms/software) and potential prob-
lems with underlying assumptions, notably Gaussianity.

3.1. Issues related to the input data

The input data used in our analysis have been exten-
sively tested for potential systematic errors in S2001, and
constitute arguably the cleanest deep angular survey data
to date. In particular, S2001 presents a battery of tests for
problems involving star-galaxy separation and modulation
of the galaxy detection eÆciency by external e�ects such
as photometric calibration, seeing conditions and Galactic
extinction. By cross-correlating the galaxy maps with var-
ious two-dimensional \trouble templates" corresponding
to variations in seeing, reddening, stellar density, camera
column structure, etc., the various e�ects were quanti�ed
and reduced to negligible levels by sharpening the seeing
and reddening cuts. This gives us con�dence that no such
residual e�ects are having substantial impact on the an-
gular power spectra that we compute.
As an additional precaution, we complement the tests

from S2001 with two that are tailored for our C`-analysis.
Speci�cally, we compute the angular power spectra of the
seeing and reddening templates, which were found to be
the most serious challenges in S2001. Strictly speaking,
these of course do not have well-de�ned power spectra,
since they are not isotropic random �elds. Rather, what
is relevant here is the amplitude and shape of the bias
that they would add to our estimates of the galaxy power
spectra. We therefore process these templates in exactly
the same way as the galaxy maps, with the pair-weightings
(the Qi-matrices) given by the galaxy noise and signal ma-
trices. We use the weighting and sky mask corresponding
to the faintest magnitude bin, since this is the one that
is most vulnerable to these systematics | both because
these galaxies have the poorest signal-to-noise ratio in the
CCD photometry (Lupton et al. 1996) and because they
have the lowest intrinsic angular clustering amplitude.
We use the same seeing and reddening templates as

S2001, i.e., the second moment of the point-spread func-
tion for each pixel and the extinction correction from
Schlegel et al. (1998). In order to provide a meaningful
comparison between the amplitudes of signal and system-
atics, we need to estimate the conversion factor from see-
ing or reddening power to galaxy uctuation power. We
do this using the cross-correlations presented in �gures 8
and 9 of S2001. To be conservative and err on the side
of caution, we use the relevant 2� cross-correlation upper
limits, 0.0017 and 0.0038, for seeing and reddening, re-
spectively. These values are the largest upper limit on any
angular scale, but we have used them at all angular scales
` to be conservative.
The corresponding angular power spectra for seeing and

extinction are shown in Figure 8 and, as opposed to the
galaxy uctuations, they are seen to rise towards larger an-
gular scales. For the reddening case, this is in good agree-
ment with the �ndings of Vogeley (1998) and measure-
ments of the dust power spectrum. The combined DIRBE
and IRAS dust maps suggest a power law C` / `�2:5

(Schlegel et al. 1998), and a recent analysis of the DIRBE
maps has supported an even redder slope with an `�3

power law for ` �< 300 (Wright 1998).
It is reassuring that even with the highly pessimistic

Fig. 8.| To give a feeling for the magnitude of potential system-
atic errors, the power spectrumin the faintest (andmost vulnerable)
magnitude bin is compared with the power spectra for seeing and
extinction modulations of the observed galaxy density under very
pessimistic assumptions.

assumptions described above, the expected contaminant
signal remains much smaller than the observed galaxy
power spectrum all the way out to the largest scales cur-
rently probed. Extrapolation to extremely large scales
suggests that extinction issues may become dominant only
for ` �< 5� 10.

3.2. Issues related to algorithms, software and
assumptions

Since our analysis consists of a number of somewhat
complicated steps, it is important to test the integrity of
both the software and the underlying methods. We do this
using two types of Monte Carlo simulations:

1. We analyze 1000Monte-Carlo maps x that are drawn
from a multivariate Gaussian distribution with van-
ishing mean and covariance matrix C.

2. We analyze 100 Monte-Carlo galaxy samples includ-
ing non-linear clustering as described in Scoccimarro
& Sheth (2001) and S2001.

Both sets of mock data were processed through our anal-
ysis pipeline, enabling us to check not only whether we
obtained the correct answer on average, but also whether
the scatter and the error correlations corresponded to the
predicted values. The �rst suite of Monte Carlos o�ered
precision end-to-end tests of the algorithms and the soft-
ware, since errors or bugs in any of the many intermediate
steps would have manifested themselves here. They used
the exact same survey geometry as the real data, including
the seeing and reddening masks of S2001.
The second suite of Monte Carlos provides a way of

quantifying the limits of applicability of the Gaussian
assumption. They were constructed using the PTHalos
code (Scoccimarro & Sheth 2001) as described in detail in
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Fig. 9.| The simulated kurtosis of the �rst 1957 KL-coeÆcients
is shown for the 18 < r0 < 19 magnitude bin. Each triangle repre-
sents the kurtosis of the distribution for the corresponding mode as
measured from the 100 nonlinearMonte Carlo simulations described
in the text. The thick curve shows a running average of 25 modes,
whereas the thin horizontal line shows the Gaussian prediction of
three.

Scranton et al (2001), covering a rectangular 90Æ�2:5Æ sky
region. In short, this code is a fast approximate method
to build non-Gaussian density �elds with realistic corre-
lation functions, including non-trivial galaxy biasing (ob-
tained by placing galaxies within dark matter halos with
a prescribed halo occupation number as a function of halo
mass).
The non-Gaussian e�ects produced by non-linear evolu-

tion encode information that can be captured by measur-
ing higher-order moments and other statistics. Since this
route is explored in detail in Szapudi et al. (2001), we will
not pursue it here. However, we need to quantify the level
to which this non-Gaussianity a�ects our results.
Since our power spectrum estimates are simply quadratic

functions of the density �eld, they give unbiased measure-
ments of the underlying power spectrum even if the uctu-
ations are non-Gaussian. In other words, our calculation
of window functions, KL-modes etc. is completely general
and does not make any assumptions about Gaussianity.
The one place in the quadratic estimator formalism where
Gaussianity is assumed is in the computation of error bars.
Since the variances of our power spectrum estimates in-
volve fourth moments of the density �elds (kurtosis), they
will generally di�er from the Gaussian prediction in the
presence of non-Gaussianity | typically by being larger.
The covariance between band power estimates likewise in-
volves fourth moments, so we should not expect our error
bars to retain their attractive property of being uncorre-
lated down into the nonlinear regime. The third moment
(skewness) of the galaxy distribution also a�ects the power
spectrum error bars via coupling to the Poissonian shot
noise, at a level of the same order of magnitude as the
kurtosis.

To quantify this e�ect, Figure 9 shows the kurtosis of
the �rst 1957 KL-coeÆcients for the 18 < r0 < 19 magni-
tude bin. (This brightest magnitude bin is expected to be
the most non-Gaussian, since it involves the least amount
of line-of-sight averaging and probes the smallest spatial
scales) The kurtosis was computed by processing the 100
nonlinear Monte Carlo simulations through our analysis
pipeline and computing the variance and fourth moment
of the 100 values obtained for each mode. The dimension-
less kurtosis plotted is the fourth moment divided by the
square of the variance, i.e., hy4i i=hy2i i2, and would equal
three for Gaussian uctuations (in which case the KL-
coeÆcients would be simply independent Gaussian ran-
dom variables). Since we have only 100 simulations, there
is still a fair amount of scatter. To further reduce the
scatter, we have therefore added a line in Figure 9 show-
ing a running average of 25 consecutive triangles. The
scatter (which is determined by eighth moments) appears
to rise somewhat initially, as modes probe progressively
smaller angular scales, then decreases again as cosmolog-
ical uctuations become smaller than Poisson shot noise
uctuations. However, the kurtosis itself, which (with the
skewness) is the only quantity that a�ects our error bars,
is seen not to depart signi�cantly from the Gaussian value
on any of the angular scales we have probed. This implies
that non-Gaussianity does not appear to have a major im-
pact on our results. This is partly by design, since we
chose to focus our analysis on the largest scales.
In other words, although non-Gaussian e�ects are very

strong on small scales (indeed, the onset of non-linear evo-
lution is evident in Figure 2), they have only a weak e�ect
on the error bars of our large scale angular power spec-
trum. Factors contributing to this are the dominance of
shot noise on small scales as well as the central limit the-
orem, suppressing non-Gaussianity by averaging uctua-
tions along the line of sight.
In conclusion, we have computed the large-scale angu-

lar power spectrum from early SDSS data and performed
a series of tests validating our results. The cosmological
implications of our measurements are discussed in a com-
panion paper by Dodelson et al. (2001). Although these
results are interesting in their own right, perhaps the most
important conclusion is that the lack of discernible sys-
tematic errors even on scales as large as tens of degrees
bodes extremely well for analysis of future SDSS data.
The present data covered about 160 square degrees, i.e.,
less than 2% of the full survey that will eventually be avail-
able, so angular clustering studies are likely to remain at
the forefront of the quest for a detailed understanding of
cosmic clustering.
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APPENDIX A

THE RELATION BETWEEN
DIFFERENT QUADRATIC ESTIMATORS

The purpose of this Appendix is to describe the Q-
matrices that de�ne our analysis as well as to elucidate
the relationship between quadratic estimators of C`, w(�)
and P (k). From an information-theoretic point of view, we
will see that the key issue is not which of the three func-
tions one tries to measure, but what pair weighting is used
in the process | the minimum-variance weighting retains
all information about all three of them in the Gaussian
approximation. Indeed, we will see that the decorrelated
minimum-variance estimators of all three functions are one
and the same set of numbers, just normalized di�erently!

A.1. The Q-matrices used in our analysis

As described in Section 2.5, our power spectrum es-
timators are quadratic functions of the observed galaxy
density. The estimator of the power in the ith band is
therefore de�ned by a symmetric matrix Qi that gives the
weight assigned to each pair of pixels (or KL-coeÆcients)
via equation (6). In our analysis, we make the choice

Qi =
X
j

(B)ijC
�1PjC

�1 (A1)

for a 50� 50 matrix B that will be de�ned below. It can
be shown (Tegmark 1997) that this choice distills all the
cosmological information from the original galaxy map x
into the (much shorter) vector bp in the approximation of
Gaussian uctuations, as long as the matrixB is invertible
and the binning scale �` is narrower than the scale on
which the power spectrum varies substantially. In this
approximation, the mean and covariance of the quadratic
estimator vector bp de�ned by equation (6) is given by

hbpi = BFp; (A2)

M � hbpbpti � hbpihbpit = BFBt; (A3)

where

Fij =
1

2
tr
�
C�1PiC

�1Pj

�
(A4)

is the so-called Fisher information matrix. As advocated
in Tegmark & Hamilton (1998), we choose B = DF�1=2,
where D is a diagonal matrix whose elements are chosen
so that the window matrixW = BF has unit row sums.
This choice has the virtue of giving uncorrelated error bars
(the covariance matrix of equation (A3) becomes the diag-
onal matrix M = D2) and narrow, well-behaved window
functions as seen in Figure 4.

A.2. The relation between quadratic estimators of C`,
w(�) and P (k)

Suppose the angular power spectrum parameters pi can
be expressed as linear combinations of some other param-
eters p0i, i.e.,

p = Ap0 (A5)

for some matrix A. There are two such interesting exam-
ples, involving w(�) and P (k), respectively. If we de�ne
p0i � w(�i), i.e., the angular correlation function amplitude
in the ith angular bin, then A is given by

A`i =
1

2�
P`(cos �i) sin �i��; (A6)

where P` is a Legendre polynomial and �� is the width
of the angular bins. If we de�ne p0i � P (ki), i.e., the 3D
power spectrum in the ith k-bin, then A is given by

A`i = K`(ki)k
3
i�lnk; (A7)

where K` is given by equation (B2) and � lnk is the width
of the (logarithmic) k-bins. (Throughout this subsection,
we assume for simplicity the �- or k-bins are narrow enough
to resolve any features in w(�) or P (k), and that there is
no `-binning, de�ning p` = C`.)
Using equation (A5), we can construct quadratic esti-

mators bp0 to measure p0 directly, without going through
the intermediate step of measuring the angular power spec-
trum p �rst. Writing S =

P
p0iP

0

i by analogy with equa-
tion (2), the new P-matrices are given in terms of the old
ones by

P0i =
X
j

At
ijPj: (A8)

Using equations (6) and (A1) therefore shows that the new
estimators are related to the old ones by

bp0 = B0AtB�1bp: (A9)

Here B0 is the B-matrix corresponding to the new pa-
rameters p0, and we use the same notation with primes 0

for other matrices below. To obtain an intuitive under-
standing for this relation, let us simplify things by using
the choice B � DL�1 in place of our previous choice
B � DF�1=2, where L is the lower-triangular matrix
obtained by Cholesky-decomposing the Fisher matrix as
F = LLt. L can be viewed of as simply an alternate
choice of square root of F. As described in Tegmark &
Hamilton (1998), this choice has the same desirable prop-
erties as B � DF�1=2 except that it gives asymmetric
window functions (F1=2 is symmetric whereas L is not).
A straightforward calculation shows that F0 = AtFA, so
L0 = AtL and equation (A9) reduces to

bp0 = (D0L0
�1
)At(DL�1)�1p

= (D0L�1At)At(LD�1)p = D0D�1p; (A10)

a diagonal matrix. In other words, if we use the same
number of `-values as there are bins (for � or k), with A
an invertible square matrix, then the old estimators bpi and
the new estimators bp0i are the exact same numbers except
di�erently normalized! The normalization factors Dii and

http://www.sdss.org/
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D0

ii simply let us interpret the measurements as probing
weighted averages of p and p0, respectively.
This shows that there is no fundamental di�erence be-

tween measuringC`, w(�), P (k) or some other linear trans-
formation of the power spectrum with quadratic estima-
tors of the form of equation (A1). Not only do they all
contain the same information (keeping the P-matrices the
same, two di�erent bp computed with di�erent B-matrices
are trivially related by bp0 = B0B�1bp), but even the B-
matrices will be essentially the same if we decorrelate the
measurements. This means that the rescaled C`-estimates
shown in Figure 7 can alternatively be interpreted as
decorrelated quadratic estimators of P (k), or as rescaled
decorrelated quadratic estimators of w(�)! The reason that
this paper purports to measure C` rather than w(�) is sim-
ply that the window-functions for our estimators turn out
to be narrow and well-behaved in `-space, but wide and
partially negative in �-space.

A.3. The relation between di�erent pair weightings

In the companion paper by Connolly et al. (2001), the
angular correlation function w(�) was measured with a
di�erent technique, using so-called Landy-Szalay (LS) es-
timators. LS-estimators are also quadratic estimators, and
in our notation corresponds to replacing the Q-matrix
choice of equation (A1) by

Qi = NiPi: (A11)

For the w(�)-case, the P-matrices take the simple form
Pjk = 1 if the angular separation between pixels j and
k falls in the angular bin around �k, vanishing otherwise.
The normalization constants Ni are simply the number
of pixel pairs with angular separation in the ith angular
bin, so Ni = trP2

i . The estimators corresponding to equa-
tion (A11) are not simply related to those corresponding
to equation (A1) since the C�1-weighting is absent. They
therefore do not contain the same cosmological informa-
tion. However, they have two other very desirable proper-
ties. The �rst is that the window matrix from equation (7)
is

Wij � tr [PiQj] = Nitr [PiPj] = Æij; (A12)

the identity matrix. This means that the LS quadratic es-
timators can be interpreted as exact measurements of w(�)
with no smoothing whatsoever. The second advantage is
computational speed. Since no time-consuming matrix in-
versions are necessary, the LS-estimator of w(�) can be
computed with many more pixels than would otherwise
be feasible, probing the clustering down to far smaller an-
gular scales than we have probed in this paper. Finally, it
is worth noting that the lossless property of the quadratic
estimators of equation (A1) breaks down on small scales
where uctuations become non-Gaussian, making the com-
putationally superior LS-estimators preferable in this regime.
The bottom line is that the C`-estimation used here and
the LS-estimation of w(�) used in Connolly et al. (2001)
are highly complementary approaches, being preferable on
large and small angular scales, respectively.

APPENDIX B

THE RELATION BETWEEN C` AND P (k)

In this Appendix, we discuss the close relation between
the angular power spectrum C` that we have measured
and the underlying 3D power spectrum P (k). The pur-
pose is both to review their exact quantitative relation,
and to provide qualitative intuition for this relation and
how it is a�ected by mis-estimates of the radial selection
function. As we will see, C` can be interpreted as essen-
tially a smoothed version of P (k) shifted horizontally and
vertically on a log-log plot, and a mis-estimate of the mean
survey depth would shift the power spectrum along lines
of slope �3.

B.1. The exact relation

The angular power spectrum C` is related to the 3D
power spectrum P (k) by

C` =

Z
1

0

K`(k)P (k)k
2dk (B1)

for a dimensionless integral kernel K`(k) that depends on
the radial selection function of the survey. As shown in
Appendix A of Huterer et al. (2001),

K`(k) =
2

�
f`(k)

2; (B2)

where f` is the Bessel transform of the radial selection
function f(r) as given by equation (9). Speci�cally, f(r) =
g(r)h(r), where g(r) is the probability distribution for the
comoving distance from us to a random galaxy in the sur-
vey and h(r) is an optional (bias and clustering) evolution
term of order unity, so g has units of inverse length and h
is dimensionless. De�ning N to be the expected number of
galaxies within a sphere of a certain radius, we thus have

g(r) / dN

dr
=

dN=dz

dr=dz
=

H(z)

H0r0

dN

dz
; (B3)

normalized so that Z
1

0

g(r)dr = 1: (B4)

Here r0 � c=H0 � 3000h�1Mpc, and the relative Hubble
parameter is

H(z)

H0
=
p

� + (1�
� � 
m)(1 + z)2 + 
m(1 + z)3

(B5)
for a cosmology with density parameters 
m and 
� for
matter and vacuum energy, respectively. This means that
uncertainties about dN=dz and uncertainties about the
cosmological parameters (
m;
�) get combined, entering
only via the single function g(r).
The evolution term h(r) relates the past and present

galaxy clustering amplitudes, and is given by

h = [P (k; z)=P (k)]1=2 (B6)

for a at Universe. If space should turn out to be curved
despite present evidence to the contrary, h gets multiplied
by a correction factor as in Peebles (1980). The factor
h is likely to remain close to unity for the low redshifts
z �< 0:5 probed by the SDSS, especially since the e�ects of
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bias evolution and dark matter clustering evolution appear
to partially cancel (Blanton et al. 2000). The clustering
evolution is expected to be small over this redshift range
since linear growth grinds to a halt at recent times when
vacuum energy becomes dominant. Rather than attempt-
ing a complicated and poorly justi�ed model for h(r), we
therefore simply set h(r) = 1 and reinterpret the mea-
sured P (k) as the power spectrum at the e�ective redshift
corresponding to r � `=k (Dodelson et al. 2001).
In practice, we evaluate the Bessel-transform of equa-

tion (9) for 512 logarithmically equispaced k- and r-values
using Fourier methods from the FFTlog package of Hamil-
ton (2000). This is an eÆcient N logN algorithm, evalu-
ating all kernels up to ` = 1000 in about a minute on a
workstation. Sample results are shown in Figure 5 using
the selection function for the 21 < r0 < 22 band described
in Dodelson et al. (2001) for a Universe with 
m = 0:3,

� = 0:7.

B.2. The small-angle approximation

The approximation

K`(k) � 1

`k2
f

�
`

k

�2

; (B7)

becomes accurate in the small-angle limit (see, e.g., Kaiser
1992; Baugh & Efstathiou 1994), as illustrated in Figure 5.
This is the `-space version of Limber's equation, which re-
lates P (k) to the angular correlation function w(�). Equa-
tion (B7) can be derived directly from equation (B2) by
noting that for large `, the spherical Bessel function j`(kr)
becomes sharply peaked around kr = `. Assuming that
f(r) is a smoothly varying function relative to this peak
width, we can thus approximate it by f(`=k) and take it
out of the integral in equation (9), obtaining

f`(k) � f

�
`

k

�Z
1

0

j`(kr)dr �
� �

2k2`

�1=2
f

�
`

k

�
; (B8)

since Z
1

0

j`(x)dx =

p
�

2

�
�
`+1
2

�
�
�
`+2
2

� �r �

2`
(B9)

for `� 1.

B.3. k-space window functions

Since our measured band powers probe linear combi-
nations of the actual power spectrum coeÆcients C`, and
these in turn are linear combinations of P (k), we can rein-
terpret our band-power measurements bpi as probing P (k)
directly. In other words, the window matrixW from equa-
tion (7) relates our measurements to C` and the kernel
K`(k) of equation (B1) relates C` to P (k), so combining
the two relates our measurements to P (k). Speci�cally,
these two equations give

hbpii = Z
1

0

X
`

Wi`K`(k)P (k)k
2dk (B10)

for the case of no `-binning. Since we have binned our
angular power spectrum in `-bins of width �` = 20, the
sum over ` in equation (B10) gets replaced by a sum over
bins andK`(k) gets replaced by its average over each `-bin.

Equation (B10) is seen to take the simple form hbpii =R
Wi(k)P (k)d lnk for functions Wi(k) �

P
`Wi`K`(k)k3

that are never negative. De�ning normalization constants
ci �

R
Wi(k)d ln k, this means that we can interpret our

measurements bpi as probing simply ci times weighted av-
erages of P (k) with weight functions Wi(k)=ci. However,
caution is necessary before using this fact to make plots
like Figure 7. The reason is that if the window functions
Wi(k)=ci are wide (which they are) and the function to
be measured varies substantially on the scale of this win-
dow (which P (k) typically does), then the weighted av-
erage will be dominated by one edge of the window. For
instance, in the regime of Figure 7 where P (k) is rapidly
falling, the integral

R
Wi(k)P (k)d lnk would be dominated

by the contribution from k-values leftward of the peak of
Wi(k), causing the corresponding point in Figure 7 to be
plotted misleadingly far to the right. Such problems can
be avoided by rede�ning the quantity to be measured to
be a roughly constant function. This is why we chose to
measure �2` rather than C` above. Following, e.g., Eisen-
stein & Zaldarriaga (2000) and Hamilton et al. (2000), we
therefore interpret our measurements as weighted averages
of the relative power spectrum, de�ned as P (k)=P�(k),
where P�(k) is our �ducial power spectrum described in
Section 2.5. This relative power will be a fairly constant
function (of order unity) as long as the shape of our �du-
cial power spectrum is not grossly inconsistent with the
truth. We therefore write

hbpii = Z
Wi(k)

P (k)

P�(k)
d lnk; (B11)

where we have de�ned window functions

Wi(k) � P�(k)k
3
X
`

Wi`K`(k); (B12)

These functions are plotted in Figure 6 for the faintest
magnitude bin. This equation is analogous to equation (7),
linking our measurements to the 3D power spectrum P (k)
rather than the angular spectrum C`. The rescaled band-
power coeÆcients bpi=ci are thus weighted averages of the
relative power spectrum, where ci �

R
Wi(k)d lnk as be-

fore. The numbers (P�(k)=ci)bpi can therefore be viewed as
a measurements of P (k), and are plotted in Figure 7 at the
k-values corresponding to the means of the distributions
Wi(k), with horizontal bars indicating the rms widths of
Wi(k). The results are seen to be roughly consistent be-
tween magnitude bins and in agreement with a standard
�CDM power spectrum.

B.4. The narrow window approximation and the poor
man's Limber inversion

Let us now make an approximation aimed at building
qualitative intuition for how C` is related to P (k) and,
in particular, for how this relation depends on the details
of the selection function f(r). Figure 5 shows that the
kernels K`(k) from equation (B1) are fairly narrow positive
functions with a single peak. De�ning their nth moments
as

hkni` �
Z

K`(k)k
nd lnk; (B13)
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they are therefore roughly characterized by their areas A`,
means k` and rms widths �k` given by

A` � hk0i`; k` � hk
1i`
A`

; and �k` �
� hk2i`

Ai
� k2`

�1=2

;

(B14)
respectively. In the crude approximation that the widths
�k` of these curves are smaller than the scale on which
the dimensionless power k3P (k) varies appreciably, we can
approximate k3P (k) by k3`P (k`) in the integral of equa-
tion (B1), obtaining simply

C` �
Z
1

0

K`(k)P (k`)k
3
`d lnk = A`k

3
`P (k`): (B15)

Since P (k) is roughly a power law near any given k, this
approximation is accurate in the limit where �k`=k` � 1.
To highlight the scale dependence of the problem, let us

de�ne the mean comoving distance by

r� �
Z

f(r)rdr (B16)

and the dimensionless probability distribution function
(PDF) for x � r=r� by

f�(x) � r�f(r�x): (B17)

The PDF f thus has both area and mean of unity, and
quanti�es only the shape of the radial selection function,
with r� encapsulating the physical depth of the survey.
Since f(r) = f�(r=r�)=r�, substituting the small angle
approximation of equation (B7) into equation (B13) now
gives

hkni � �n`
n�3

rn
�

; (B18)

where the dimensionless constants

�n �
Z

f�(x)
2x1�ndx (B19)

are all of order unity. Substituting equation (B18) into
equation (B14) now gives the simple results

A` =
�0
`3
;

k` =
�`

r�
; (B20)

�k` = k`;

where � � �1=�0 and  � (�0�2=�
2
1 � 1)1=2 are again di-

mensionless constants of order unity that depend only on
the shape function f�. Substituting equation (B20) into
equation (B15) thus gives the extremely simple formula of
equation (10), where � � �0�

2 = �31=�
2
0. Equation (10)

tells us that we can perform a \poor man's Limber inver-
sion" by simply making a log-log plot of C` and changing
the axis labels to k and P (k), respectively, making the
substitutions

` 7! k =
�`

r�
; C 7! P =

C

�
: (B21)

The key caveat is that the resulting plot shows not the
true P (k) but a smoothed version thereof, with a roughly

constant smoothing width � lnk =  on our logarithmic
k-axis.
For the SDSS selection functions described in Dodel-

son et al. (2001), � � 0:75, � � 1:1 and the smooth-
ing width  = �k=k � 0:37 for all four magnitude bins.
Even major changes in the functional form of the radial
selection function do not change these shape parameters
by large amounts. In contrast, the mean survey depth
varies substantially, with r� = 515h�1Mpc, 710h�1Mpc,
947h�1Mpc and 1193h�1Mpc for the four magnitude bins,
respectively, with non-negligible uncertainty (Dodelson et
al. 2001).
Since the relative windows widths �k=k are so large,

it is important to use equation (B12) rather than equa-
tion (10) on the largest scales, where k3P (k) is far from
constant. Moreover, the additional smearing �` � 20
caused by our �nite sky coverage becomes important on
large scales, since it corresponds to a rock-bottom smooth-
ing scale �k � ��`=r� that does not decrease with k.
Perhaps the most useful feature of equation (10) is that

it explicitly shows the e�ect of changing the radial selec-
tion function. If the shape f� has been correctly estimated
but the mean survey depth r� has been overestimated,
then equation (10) shows that the inferred power spec-
trum P (k) will be too far up to the left | up because
there was in fact less averaging along the line of sight sup-
pressing the observed power C`, to the left because a given
angular scale ` in fact corresponds to larger spatial scale.
Any such errors will therefore slide the entire P (k) curve
along the solid lines of slope �3 shown in Figure 7.
Although the dominant uncertainty is likely to arise

from the mean depth r�, the dependence on the shape
(as opposed to the mean depth) of the selection function
is also rather intuitive. If the galaxies are more concen-
trated around their mean distance (if f�(x) is more sharply
peaked around x = 1), then a straightforward calculation
shows that the normalization � increases and the smooth-
ing width  = �k=k decreases. The �rst e�ect corresponds
to less averaging down of uctuations along the line of
sight, increasing C` for a given P (k). The second e�ect
corresponds to less aliasing, since the relation between an-
gular separation and transverse spatial separation tightens
when the galaxies become less spread out radially. Since 
is essentially the width of the the radial selection function
in units of the mean depth (more precisely, this ratio for
the square of the selection function, which is more peaked
and therefore gives a smaller number), it is diÆcult to
obtain smearing �=k �< 25% for realistic selection func-
tions. However, much smaller -values of course become
possible if photometric redshifts are used to de�ne galaxy
samples in narrow radial bins.
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18 < r
0
< 19 19 < r

0
< 20 20 < r

0
< 21 21 < r

0
< 22

` �
2
` ` �

2
` ` �

2
` ` �

2
`

13 � 8 -0.0006 � 0.0028 13 � 8 0.0002 � 0.0011 13 � 8 0.0004 � 0.0005 13 � 8 0.0008 � 0.0003

31 � 15 0.0115 � 0.0048 31 � 15 0.0053 � 0.0021 30 � 15 0.0017 � 0.0010 30 � 15 0.0009 � 0.0006

51 � 18 0.0132 � 0.0059 50 � 18 0.0067 � 0.0028 50 � 18 0.0034 � 0.0015 49 � 19 0.0013 � 0.0008

70 � 20 0.0185 � 0.0064 70 � 20 0.0105 � 0.0031 70 � 20 0.0088 � 0.0017 69 � 21 0.0043 � 0.0010

100 � 24 0.0192 � 0.0048 100 � 24 0.0128 � 0.0024 99 � 24 0.0075 � 0.0013 99 � 24 0.0052 � 0.0008

139 � 25 0.0261 � 0.0052 140 � 25 0.0107 � 0.0025 140 � 25 0.0069 � 0.0014 139 � 25 0.0045 � 0.0009

179 � 25 0.0229 � 0.0056 179 � 25 0.0133 � 0.0027 180 � 25 0.0079 � 0.0015 180 � 25 0.0039 � 0.0010

219 � 26 0.0272 � 0.0061 219 � 25 0.0179 � 0.0028 220 � 25 0.0103 � 0.0015 220 � 26 0.0052 � 0.0010

259 � 26 0.0357 � 0.0067 259 � 26 0.0114 � 0.0030 259 � 25 0.0087 � 0.0016 260 � 26 0.0040 � 0.0010

308 � 29 0.0353 � 0.0060 309 � 29 0.0205 � 0.0027 309 � 29 0.0098 � 0.0014 309 � 29 0.0054 � 0.0009

369 � 30 0.0544 � 0.0067 369 � 30 0.0291 � 0.0030 369 � 29 0.0133 � 0.0015 369 � 30 0.0067 � 0.0009

445 � 40 0.0545 � 0.0066 446 � 39 0.0268 � 0.0027 446 � 37 0.0144 � 0.0013 448 � 39 0.0086 � 0.0008

546 � 37 0.0165 � 0.0016 546 � 38 0.0083 � 0.0009

646 � 39 0.0117 � 0.0011

Table 1. The angular power spectrum �2` � [`(`+ 1)C`=2�] measured for the four magnitude bins. These measurements are uncorrelated in

the approximation of Gaussian uctuations. Although the power spectrum is by de�nition non-negative, the allowed ranges above can include

slightly negative values since our estimators are the di�erence of two powers (total observed power minus expected shot noise power).


